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ABSTRACT

Continuity matrices have been developed for matter, energy and entropy
networks. The advantages of this approach are the increased generality and compact-
ness developed by the set of three matrix equations. A simple power plant system or
neiwork is analyzed using the matrix method.

NOMENCLATURE
Latin symbols
E Power matrix
2

e Energy (u + L4 + ZE)

29. 9e

-2

e° Energy (h + v + E)

29 4.
J Generalized flow element in 7 matrix, with bar column storage matrix
J Generalized net flow out matrix (no storage)
m Mass
@ Heat flux energy matrix
S Entropy matrix
T Generalized network transport matrix, without bar absolute temperature
174 Work flux (power) matrix
I Ugit column matrix
h Enthalpy
V Velocity
g. Gravitational constant, with ¢ = acceleration due to gravity
z Distance above a selected datum plane
Subscripts
c Column
e Energy

f Final
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i Initial
m Mass
n Node or node number

Greek symbol
A Difference

INTRODUCTION

Past work in network algebra indicates that balances of matter and charge may
be made around nodal points in the network. These points are usually electrical,
hvdraulic or pneumatic junctions. In this presentation and eguipment node will be
consicdered around which a number of continuity balances will be made. This ap-
proach, in the system component sense, is not entirely new and has been considered
in the past by almost every engineering discipline. What is new here is the application
of classical thermodynamical control volume concepts to multicomponent systems
which may be defined as thermodynamic networks. In the formulation of the final
matrix expressions for continuity the concepts of Lange' will be utilized in conjunction
with the recent thermodynamics text of Van Wylen and Sonntag. These thermo-
dynamic matrices now present a compact form of solution for large converter net-
works of many types. A tvpical solution is shown using the matrix method which
demonstrates its simplicity and power.

GENERALIZED CONTINUL1 Y BALANCE AND STORAGE

Continuity matrix

It is possible to show the continuity balance in a simple matrix form. A three-
node (three pieces of equipment) system continuity balance will be shown in a general-
ized form and this will be then extended into a more complex n#-node network. If in
Fig. 1 a flow quantity of some entity is defined as j, then T constitutes a form of

Fig. 1. Three-node thermodynamic network.
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connection matrix for the system or network. The j’s may be anv quantity which may
flow into or out of a node.

Jir Jiz2 Jis3
T= J2s J22 J23 (1)
j3 1 j3 2 j33
The net flow of any entity out of the node is formed by subtracting the transpose
of T from T and multiplying by 2 unit column vector, I.. The transpose of T is:

Jin J21 Jna
T* =\ljiz Jzz Jsz @
Ji3 J23 Js3
and thus
(Jiv Jiz Jis Ju Ja1 Jss
T-T* = J2i1 P22 Ja3l — |Jiz J2z2 Jsz2 3
Lj31 J3» Jssd Ji3 J23 J33

(11 —J11) Uiz2—J21) Uiz—Js1)
T-T* = G2 —sz) (jzz—fzz) (jzs—fsz) (4)
L (31 —J13) Usz2—J23) Ussz—Js3)

It is assumed that nodal self-locps do exist then since j,; =Jji1, j22 == J22, J33 =.J33-
The generalized balance on the three-node network is then

0 (jlz_jzx.) 013"]31) 1

Jn = (jzx—sz) 0 (jzs—jsz) 1 (5)
Usi1—J13) Usz—Jj23) Y 1
The expanded form clarifies the matrix expression (5) as seen below
rJ, TJiz—J21tiiz—Js1’}
Jol = \Vj2i—Jr12tJ23—J32 (6)
J j3l-j13+j32_j2
so that the net flow of entity out of node 1 is
Ji = jizti3—J21 =31 Q)

for node 2

J2 = jartiaa—Jji2—Ja2 ®)
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and for node 3

Jys =Jsi¥is2—Jis—Jzs &)
Eguation (5) may be condensed into a simple form which may be defined as a con-
tinuity matrix.

J, = (T-T*I, (10)

The number of nodes present is of no consequence so that in the derivation example
n =3 but n may be chosen to be of any value.

Storage matrix

A node may store some entity (matter, energy or entropy): the storage may also
be indicated by a matrix expression:

Let j;, = amount of entity stored in node at start of time (or ¢ = 0).
Let j,, = amount of entity stored in node at end of time (or 1 =1¢).

Hence
Ny = Jyn—Jin (11)

For n nodes then

3

(“ -

9

1] 2

b

Y

W

4j, = 12

| 4jn_]

Internal nodes (nodes with both inputs and outputs) may or may not store an entity
(mass, energy or entropy}. Boundary nodes frequently have storage associated with
them. A word equation now descrihes the relationship between expressions (10) and
(12

[net flow out of entity] + [storage of entity] = O (13)
or

Jo+dj, =0 (14)

3, = —A4j, (15)
Equivalently

(T-THI.+3j,=0 (16)

Now recall that the elements in the matrix, 7T, may be mass, charge, energy, entropy,
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vehicles or people. By using the normal thermodynamic law. which can be applied
to these nodes a complete analysis of the network may be achieved.

APPLICATION OF THE LAWS OF THERMODYNAMICS TO THE NETWORK

Matter balance
A matter balance for the generalized network now takes the form of the expres-

sion shown below if expres

sion {16) is utilized. Let j=m so that

(T.-THI.+4m,, =0 17

or expanded so as to indicate all elements:

B 0 (my,—myy) (my3—miyy) ... (my,—niyy) 1] FAm;y]
(my; —my5) 0 (my3—my5) .. (may,—m,,) 1 Am,
(mzy—my3) (M3, —msa) 0 (myy—mys) (mz,—mu3) || 1} + | dmy =0

. ; etc. ; ; . (18)
| (m,, —my,) 0 Ji1, | Am,, |

Equation (18) can be rewritten as*
D, I .+Aj, =0 (19

Conservation of energy ( first laic of thermodynamics)

Matter moving into the network has associated with it a number of typical
energies—kinetic, potential flow and work and internal. The most effective manner of
writing the energy matrix for a network is to observe eqn (26) and consider energy
along with mass elements in the mass matrices. There are two additional terms to
consider: one is the heat into or out of each node and the other is the work into or
out of each node. Assume, as is normally done, that the heat in is positive and the
work out is positive. Care must be taken when these matrices are formed that the
work and heat signs are correctly inserted.

The first law of thermodynamics normally 1s written as

QO—W = dE. {20)
Using fluxes in eqn (20) gives a power expression
O0—W = dE.
In matrix form the balance around each node is simply
. — 2
6. W, = aE. @0

*The node number index 2™ will be omitted from here on in the storage term.
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where the dE matrix can be written as

dE, = D, I.+4j.. (22)

Substituting eqn (22) into eqn (21) gives

3.—W.=D_I.+4j. (23)

Equation (20) constitutes an expression which indicates the energy balance around
each node in the network. If energy storage in nodes, heat and work flux are known,
then all energy node balances can be made with eqn (22); the net flow of energy out
of each node is obtainable.

Consercation of entropy (second law of thermodynamics)

The existence of entropic networks may be seen in all levels of process reality.
Irreversible losses occur in all actual processes and it may be anticipated that the mass
and energy continuity balances should lead to the consideration of an entropic
balance on networks.

As in the energy case entropy is associated with matter and its flow throughout
the network. This reasoning would then suggest the storage and transport (or flow)
matrices as seen in eqns (19) and (22). For the network, the second law of the thermo-
dynamics is written as?

ds = 0T 29

For every node in the network

as = (0/7). (25

where T = absolute temperature of node surface (or node in most cases), O = heat
flux added or dzleted from node and d3 may be expressed in entropic storage and
flow

dS = D_ 1.+ 4j, 26)
Then
D, I.+4j, = QIT. @7

Note that the matrix Aj, indicates the storage of entropy in all nodes of the system.
Since eqn (24) is written for reversible or irreversible processes a number of
cases may be considered for expression (27).

Reversible netuwork case (Q #£0). In this ideal set of conditions all nodes act in a
reversible manner so that : :

Dpal.+4j, = OIT. (28)
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Reversible adiabatic netu-ork case (Q = 0). All equipment nodes in this approximation

are not only reversible processes, but also are adiabatic and hence: é," T.=0 (no heat
fluxes) and Aj,, =% (since changes in entropy storage would mean the transfer of
energy or work out of or into interior and boundary nodes). Therefore,

D.I.=0 29

Irreversibfe network case (Q #0). The network nodes have asscciated with them
irreversible processes so that the entropy of the total network increases thus

D I.+4j.>0/T (30)

Net energy flow into (or out of) network

In Fig. 3 the nodes in the cycle have a number of inputs and outputs. Of partic-
ular interest here is the inputs and outputs into or out of the region which contains the
network.

The energy matrices on the left-hand side of eqn (23) are of interest. Heat input
into the network has been taken as positive (output as negative); work energy input
has been taken as negative (output as positive). The total net energy either absorbed
or rejected by the cycle may be written as

Erc = Zqi'*';wi G1)
or
p— 1 — — 1 —
1 1
Erc=(41,42’ ds, --- qn) 1 + (wl’wz’w3’ .- wn) 1 (32)
|1, 1,
or generally for non-cyclic networks
E;.=Q*1+ W*I (33)

and for cyclic networks

o*I+W*I=o. (39)

Energy network vectors and matrices :
Equation (23) has shown the usual energy equation in vector and matrix form.
It is then possible to speak of thermodynemic networks as having heat vectors, work
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vectors, energy flow matrices and energy storage vectors:

heat vector work vector energy flow matrix energy storage mztrix

o - w o = DI + A~ (23)

=

The matrix D,, is composed of row (or column) vectors which are cach related to
the flows into and out of all nodes. Also the elements in this matrix are not simple
and they themselves are the scalars resulting from the multiplication of ene-gy and
uRit vectors.

Since generally 1t was shown that

D.,=T-7* then for energy
Dnnx = E_ E*
TEyy Eyx Ej3 Epy - Ey,;T [Eyy Ezy Esy - Eny]
E,y E,; Ej; E,> E;; E;5
D, = Est etc. _ |Es etc. 35)
E. Eys ’
—~ni - 'Eln e
But actually
V, g
Eyw=h,;, +1+Z,,=
29:: g, (36)
¥
12 & hz:: + 12 + sz—g‘
<9 Ge

3N

etc.
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or
Eli = éu*ls
E:z = 512*73 3%
etc.

hyy renthalpic energy

€y = — | = | kir.etic energy

Z,— potential energy |

so that in general

(e,: *I.’.) (élz*is) Eln*I3 (e,, *Iz) (é,; *Is) (énn*l-s)
5m = |{(€,; *Is) (ézz*is) - (éu*Is) (ézz*I_’.) (énZ*IS) 39)
ete. Letc. d

Then the E matrices may be replaced by D,,, = (Z —Z*) so that
O—-W = @Z-Z9I+Aj. (40)
In eqn (40) it is now understood that three types of energy exist within each element

of the Z matrix — enthalpic, kinetic and potential. Equations (23) a..a (40) are identical
except that in eqn (40) the three energy forms are explicitly statcd.

Example of use of matrix method: simple power plant network

Energy matrix

An example of the application of this network technique is indicated by using
the steam power example given by Van Wylen and Sonntag. it i< instructive to com-
pare the approach by these authors and the use of a generalized niwork mathematics.

The diagram of the steam power plant is indicated in Fig. 2. Figure 3 is a
netwark representation of the same plant. Note that the plant is simple with a cyclic
nature quite obvious.

For the system shcwn in Fig. 2, find:

(a) The heat transfer in line between boiler and turbine, O,
(b) Turbine work, 7,

(c) Heat transferred in condenser, g,

(d) Heat transferred in boiler, g5

from the given data (from Van Wylen and Sonntag):

E,, = 1289 Btu/lb E,; = 78 Btujlb  w,, = 3 Btujlb
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Fig. 2. Steam power plant (schematic).

pI
2 /

o

Fig. 3. Steam power plant (network form).

Applying eqn (23) or (40) to this example gives:

495 ] [ © 71 [ EwE2EsEsEis | [ Ess Eay Esi Eqy Esy'|
+qpr 0 E3y Ez; Ez3 Ezq Ezs Eyz2 Ez2 E; Eqz Esz
0 —| wr |=94| Esi Es2 E33E34 Ess | —| Ey3 Ez3 E33 Eq3 Es
+4. 0 EGEEisEL Egs | | Ege E2.4 Es;  Eg  Esq

| 0 4 L +wp _Esy Esz Esy Esg Ess | | E;s Ezs E3s Eys Ess )|

v

i

)
[a-»--b-o»-a

41)
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Since there are no f2edbacks on the individual equipment nods=s a number of elements
in the energy matrix is zero. Note also self-lcoping is zero (E,;, E,», etc. =0).

— r- —_—

+gqz | [ O 0 E;, 0 0 0] [0 0 0 O0Es; |} 1
+4q, 0 0 0 E,; O O E,;, 9 0 0 O 1
0 |~| wr |=4 0 0 0 E; ;0 |—| 0 E;; O 0 O |} |1
+4q. 0 0 0 0 O Eg 0 0 E;4 0 0 1
| 0 | | 4wyl [LEs; 0 0 0 O0_ [0 O O E,5 O_Yf (1]

(42)

Expression (42) may be written out as:

+qp = E;2—Es;

+4p, = Ey;3—E;;

+wr = E3;—Ej; 43)

+g. = E4s—Es,

+wyy = Es;—E,s

Total energy requirement for plant

The total net energy requirement for the cycle is gotten by considering eqn (33)
and the inputs and outputs; those considered would be only those items from or into

the environment.
For the cycle:

1 1
1 1

Er. =(4+4s, +4,5,0, +0.,0) | 1 | + (0,0, +w7,0, +w,,) | i 44)
1 i

| 1] | 1]
Orc = (g@s—49p1—9qc) + (Wr—1w,y)
For a true cycle Q1. =0 and therefore
@s+qp+4q) + (wr+wyy) =0 45)

Numerical solution .

(a) Assumptions (see Van Wylen and Sonntag for their detailed assumptions
and solutions). -

(1) No heat is lost or gained throughout the system aside from those stated,
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(2) No kinetic energy and potential energy changes,

(3) No heat storage, Aj = 0.
Energy equation [see eqn (42) or (43)].

C+g5] [ 07 - 0
+a, 0 0
0O {—luwrl=1{0
+-q. 0 0
O 4 L-—3] _Es;

gqs = 1315—Es,
g,; = 1289—1315
wy = 1045—1289
g. = 78—1045
+3 = E;,—78

0
0
0

1315 O 0 07 o 0 0 0 Es;]
1289 0 O 1315 0 0 0O
0O 1450—| O 1289 0 O O
0 0 78 0 0O 10420 O

0 0 04 L O 0 0 78 0 _

(=]

(wanted) g = 1315—E;,

(wanted) g,; = —26 Btu/lb

(wanted) w; = +244 Btu/lb
(wanted) gq. = —967 Btufib

gs = 1315—81 = +1234 Btuyjlb

Consequently the overall boundary node energy balance [see eqn (44)]

ET: = (QBr dprs 0, qc, 0)

Ey. = (1234, —26,0, —967,0)

-1
1
+ (O) 0) wT: 01 pr") 1
1
1]
1
+ (0,0, +244,0, —3)
1
L

(46)

@7

(48)
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Ep. = (1234—26—967) + (244—3)
Egr. = 241241
ETC == 0 Btu/lb

Since E;. = O the cycle is a true thermodynamic cycle.

CONCLUSIONS

Continuity matrices have been developed for energy, matter and entropic
networks. The significance in this approach is the generality of the expressions and
the amenability to digital computer application to large networks.
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