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ABSTRACT 

Continuity matrices have been developed for matter, ener_gy and entropy 
networks_ The advantages of this approach are the increased generality and cnmpact- 

ness developed by the set of three matrix equations. A simple power plant system or 

ne:work is analyzed using the matrix method. 
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GeneraIized flow element in T matrix, with bar column storage matrix 
Generalized net flow out matrix (no storage) 

Mass 

Heat flux ener_q matrix 
Entropy matrix 
Generalized network transport matrix, without bar absolute temperature 

Work flux (power) matrix 
Unit column matrix 

Enthalpy 
Velocity 
Gravitational constant, with c = acceleration due to gravity 
Distance above a selected datum plane 

Sibscripts 
C Column 

e Energy 
f Final 



i Initial 

m Mass 
n Node or node number 

Greek symbol 

A Difference 

MTRODUCnOS 

Past work in network algebra indicates that balances of matter and charge may 
be made around nodal points in the network. These points are usually electricai, 
hydrauIic or pneumatic junctions_ In this presentation and equipment node will be 

considered around which a number of continuity baIances will be made. This ap- 
proach, in the system component sense, is not entirely new and has been considered 

in the past by aImost every engineering discipline. What is new here is the application 
of c1assica.I thermodynamical control volume concepts to multicomponent systems 
which may be defined as thermod’zamic networks. In the formulation of the finai 
matrix expressions for continuity the concepts of Lange’ wiI1 be utilized in conjunction 
with the recent thermodynamics text of Van Wylen and Sonntag. These thermo- 
dynamic matrices now present a compact form of soIution for large converter net- 
works of many types. A typical solution is shown using the matrix method which 
demonstrates its simplicity and power. 

G.EM3MUZED COSi-I~;ui1 Y BAMKCE AXD STORAGE 

Conrinuify mahx 

It is possible to show the continuity baIance in a simple matrix form. A three- 
node (three pieces of equipment) system continuity balance will be shown in a general- 
ized form and this will be then extended into a more compiex n-node network. If in 

Fig_ 1 a fro= quantity of some entity is defined as i, then T constitutes a form of 

Fig I. Three-node thermodynami; network. 
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connection matrix for the system or network. Thej’s may be anv quantity which may 
ffow into or out of a node. 

ill il2 j13 

T= i2r j22 i23 

i 1 (1) 

j31 i32 j33 

The net ff ow of any entity out of the node is formed by subtracting the transpose 
of T from T and multiplying by a unit coiumn vector, &. The transpose of T is: 

and thus 

=j=-T* = 

(2) 

(3) 

cill-ill~ &2-j2J CL3-j3d 
g=-=j=* = 

[ 

Gtl--i12) Ci22+22) G23-j3d (4 CL -jr31 ikt --j2d 1 CL -i331 

It is assumed that nodal self-Iocps do exist then sincej 11 =j11 f j22 =I229 j33 =.h3- 

The generahzed balance on the three-node network is then 

[ 

0 &-Li) til~-j31) 1 

J, = CL1 -i13 0 cj2S-iS3 II 1 (5) 
Ci31-i13) ci32-923) 0 1 

The expanded form clarifies the matrix expression (5) as seen below 

pJ = [~;;;;Kz~~;~j 
so that the net flow of entity out of node I is 

W 

for node 2 

J2 =i21+j23-jr2-j32 (8) 
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and for node 3 

J3 =jsl ij32-j,3-j2j (9) 

Equation (5) may be condensed into a simpIe form which may be defined as a con- 
rinzrif_r matrix. 

J, = (T-T*)], (IO) 

The number of nodes present is of no consequence so that in the derivation example 
n = 3 but n may be chosen to be of any value. 

Smrage matrix 

A node may store some entity (matter, energy or entropy): the storage may also 
be indicated by a matrix expression: 

Letj;, = amount of entity stored in node at start of time (or c = 0). 
Letjl,, = amount of entity stored in node at end of time (or t = t). 

Hence 

For n nodes then 

Irrrernai nodes (nodes with both inputs and outputs) may or may not store an entity 
(mass, ener_gq; or entropy;. Bozrrzdar>- nodes frequently have storage associated with 
them. A word equation now describes the rektionship between expressions (10) and 
(12; 

[net ffow otit of entity] + [storage of entity] = 0 (13) 

EquivaIently 

(14) 

Kou- recall that the elements in the matrix, T, may be mass, charge, ener_ey, entropy, 



vehicIes or people. By using the normal thermodynamic law, which can be applied 
to these nodes a complete analysis of the network may be achieved_ 

I7 

APPLICATIOX OF THE LAWS OF THERMODYXAMICS TO THE SIXWORK 

Matter balance 
A matter balance for the generalized network now takes the form of the expres- 

sion shown below if expression (I 6) is utilized_ Let j = m so that 

(Tm-r,‘) i,tAnz_ = 0 

or expanded so as to indicate all elements: 

0 Cm2 -i7221) (i?1,3--iJi~~) ..* (171 In - ??i,t) . 

(mzI --?J~lZ) 0 (m23-J7z32) .__ (m2,-m,,) 

( m31 -m13) (RI32 - nz23) 0 (i?13* - 17143) jillj, - 171,3) 

etc. 

7’ 

J, (m,, -mlJ 0 _ 

Equation (18) can be rewritten as* 

D_ic+Ajm = 0 

1’ 

1 

1 

1, 

+ 

AmI’ 

Am2 

Am3 

.Am, 

=o 

18) 

(19 

Conservation of energy (first lax of thermo&amics) 
Matter moving into the network has associated with it a number of typical 

energies-kinetic, potential flow and work and internal_ The most effective manner of 

writing the ener_gy matrix for a network is to observe eqn (26) and consider energy 
along with mass elements in the mass matrices. There are two additiona terms to 

consider: one is the heat into or out of each node and the other is the work into or 
out of each node. Assume, as is normally done, that the heat in is positir?e and the 
work out is positice. Care must be taken when these matrices are formed that the 

work and heat signs are correctly inserted. 
The first law of thermodynamics normaIIy is written as 

Q-W = d,T. 

Using ff uxes in eqn (20) gives a power expression 

&-I%’ = dC. 

(20) 

In matrix form the balance around each node is simply 

*The node number index ‘.n” will be omitted from here on in the storage term 



where the dE matrix can be written as 

dE, = D,,&tAj,. 

Substituting eqn (22) into eqn (21) gives 

&-%c = D,I~-!-AJ, (23) 

Equation (XI) constitutes an espression which indicates the energy balance around 

each node in the network. If ener_rry storage in nodes, heat and work flux are known, 

then a11 energy node baIances can be made with eqn (22); the net flow of ener_ey out 

of each node is obtainabIe. 

Comercation of entropy (second Jaw of tJzermodynanzics) 

The existence of entropic networks may be seen in all levels of process reality_ 

Irreversible losses occur in all actual processes and it may be anticipated that the mass 

and ener-9 continuity balances shouId Iead to the consideration of an entropic 

balance on networks. 

As in the ener_gy case entropy is associated with matter and its flow throughout 

the network. This reasoning would then suggest the storage and transport (or flow) 

matrices as seen in eqns (19) and (22). For the network, the second Iaw of the thermo- 

dynamics is written as* 

dS r d/T 

For every node in the network 

(24) 

dS 2 (Q/i-l, (25) 

where T= absolute temperature of node surface (or node in most cases), 0 = heat 
fil~v added or Meted from node and aS may be expressed in entropic storage and 

flow 

dS = n_I,fAj, (26) 

l-hen 

&&i-AjS 2 &Tc (27) 

Note that the matrix 4J, indicates the storage of entropy in all nodes of the system. 

Since eqn (24) is written for reversible or irreversible processes a number of 

cases may be considered for expression (27). 

&rxrsible netuork case (Q + 0). In this ideal set of conditions all nodes act in a 

reversible manner so that 

is,Ic+Ajs = &T, (28) 
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Reversible adiabatic netrr-ork case (Q = 0). All equipment nodes in this approximation 

are not only reversibie processes, but also are adiabatic and hence: @iT.. = 0 (no heat 
fluxes) and &,,, = S (since changes in entropy storage would mean the transfer of 
energy or WOiL out of or ____ into interior and boundary nodes). Therefore, 

D-1, = 0 (2% 

Irreversibie network case (Q # 0). The network nodes have asscciated with them 
irreversible processes so that the entropy of the total network increases thus 

&_fc+Ajs > 6/T (30) 

Net energy flow into (or out qf) netrcork 

In Fig. 3 the nodes in the cycle have a number of inputs and outputs. Of partic- 
ular interest here is the inputs and outputs into or out of the region which contains the 
network. 

The energy matrices on the left-hand side of eqn (23) are of interest. Heat input 
into *he network has been taken as positive (output as negative); work energy input 
has been taken as negative (output as positive)_ The total net ener&q either absorbed 
or rej,tied by the cycle may be written as 

or 

or generally for non-cyclic networks 

E fc = Q*i+ iPi 

and for cyclic networks 

pi+ W*I = 0. 

(33) 

(34) 

Energy network vectors and matrices 

Equation (23) has shown the usual energy equation in vector and matrix form. 
It is then possible to speak of thermodynamic networks as having heat vectors, work 

(31) 

(32) 
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vectors, enerw ffow matrices and energy storage vectors: 

heat stior work vector ener_g flow matrix ener_q storage matrix 

6 - j+ = D_ 1, -I- x (23) 

The matrix D_ is composed of row (or coIumn) vectors whic!i are each related to 
the ffows into and out of aI1 nodes Also the elements in this matrix aI= not simple 

and they thenwIves are the scalars resuIting from the muItipIic2tion of ene.,g and 
unit vectors_ 

Since generaIIy it was shown that 

&/T-P then fcr ener_q 

D,, = E-E* 

D_ = 

But actuaIIy 

E 31 etc. 

E 41 

E III 

F - h,l+~+Z12~ -12 - 

2% SC 

so that 

- 

‘El1 &I E31 - E no 

Ez2 E22 E23 

E 13 etc. 

E 1-a 

E In 

(37) 

(35) 

(36) 

etc. 
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or 

E,, = e,,*f3 

E,, = &*I, 

etc. 

(38) 

= 

enthatpic energy 

kir.etic energy 

I 
potential energy 

so that in general 

(Z,l *I,) (Z,pf3) _-- el,*iJ (ZII *f,)(Z,; *f,) _.. (&*f3) 

D, = I (PZl *f,)&*f,) --. 11 - (i&*i3)(P2pi3) __. (&*P3) 
1 

(39) 

etc. Letc_ _I 

Then the J!? matrices may be replaced by n,,,, = (z-z*) so that 

& ti = (Z-z*)T+Ax (40) 

In eqn (40) it is now understood that three types of energy exist within each element 

of the 2 matrix -eellthaIpic, kineiic and potential. Equations (23) a& (40) are identical 

except that in eqn (40) the three ener_ey forms are expiicitly sta?;d. 

Example qf use of nmrix method: simple pou-er pht nemork 

Energy mutrix 

An example of the application of this network technique is indicated by using 

the steam power example given by Van Wylen and Sonntag. it 15 instructive to com- 

pare the approach by these authors and the use of a generalized nrrtwork mathematics. 

The diagram of the steam power plant is indicated in Fig. 2. Figure 3 is a 

network representation of the same plant. Note that the plant is simple with a cyclic 

nature quite obvious. 

For the system shcwn in Fig. 2, find: 

(a) The heat transfer in line between boiler and turbine, Q,, 

(b) Turbine work, zcP 

(c) Heat transferred in condenser, qc 

(d) Heat transferred in boiler, qB 

from the given data (from Van WyIen and Sonntag): 

E,t = 1315 Btujlb Es5 = 1045 Btu/lb E,, = ? 

Ez3 = 1289 Btuflb E,, = 78 Btujlb ‘GPY = 3 Btujlb 



Trarder pipe 

Fis 2. Steam power plmt (schematic). 

Fig. 3. Steam power plant (network form). 

Applying eqn (23) or (40) to this example gives: 

~~-~~~~~~~~l 

E12 E22 E32 E42 Es2 

- El3 E23 E33 E43 Es3 

. 
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Since there are no fedbacks on the individual equipment nodes a number of eIementi 
in the energy matrix is zero. Note also self-looping is zero (E, I , E,, , etc. = 0). 

-+qr3 

+ qpr 
0 

+4c 

_ 0 I = 

. 0 El2 0 0 o- 

0 0 4523 0 0 

0 0 0 l&O 

0 0 0 0 Ed5 

.% 0 0 0 o_ 

Expression (42) may be written out as: 

+qe = %--Es, 

f q,r = E2, --E*2 

+wr = EJ4-EEt3 

+qc = &-EM 

i-w - E,,-E4, PU - 

Total energy requirement for plant 

(43) 

The total net energy requirement for the cycle is gotten by considering eqn (33) 
and the inputs and outputs; those considered would be only those items from or into 
the environment. 
For the cycle: 

- 

0 OE3&0 0 

(43 

E rc = (+6h +qp,,o, +qc,O) 

1- 

1 

1 

1 

1 _ . 

0 _rc = G?Irqp1 -42 f h---pu) 
For a true cycle QT, = 0 and therefore 

(qB+qpl+qJ + @T+wp”) = 0 

Numericai solution . 

-f- (QO, +w,,o, W,,) 

. - 
1 

i 

i 

1 

1 - . 

(44) 

(45) 

(a) Assumptions (see Van Wylen and Sonntag for their detailed assumptions 
and solutions). 

(1) No heat is lost or gained throughout the system aside from those stated, 
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(2) No kinetic: ener_gJi and potential ener_gy changes, 

(3) No heat storage, 17 = 0. 
Energy equation [see eqn (42) or (43)]_ 

4s = 1315-ES, 

4,1 = 1289-1315 

WT = 1045-1289 

4c = 78-1045 

;3 = Es,-78 

(wanted) qB = 1315-E,, 

(wanted) qpl = -26 Btujlb 

(wanted) zT = 1244 Btujlb 

(wanted) qc = -967 Btu/ib 

E 51 = -f-81 Btu/Ib 

49 = 1315-81 = t 1234 Btujlb 

0 0 0 OJ%l 

1315 0 000 

0 1289 0 0 0 (46) 

0 0 10450 0 

0 0 0 7s 0 

(47) 

(48) 

Consequendy the overall boundary node energy baIance [see eqn (44)] 

+ (0, 0, ET, 0, wPu) 

E Tc = (1234, -26,0, -967,O) 
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ETE = (1234-26-967) f (244-3) 

E+, = 241-241 

ETc = 0 Btujlb 

Since ETc = 0 the cycle is a true thermodynamic cycle. 

Continuity matrices have been developed for energy, matter and entropic 
networks. The significance in this approach is the generarity of the expressions and 
the amenability to digital computer application to large networks. 
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